RNA folding kinetics using Monte Carlo and Gillespie algorithms.
نویسندگان
چکیده
RNA secondary structure folding kinetics is known to be important for the biological function of certain processes, such as the hok/sok system in E. coli. Although linear algebra provides an exact computational solution of secondary structure folding kinetics with respect to the Turner energy model for tiny ([Formula: see text]20 nt) RNA sequences, the folding kinetics for larger sequences can only be approximated by binning structures into macrostates in a coarse-grained model, or by repeatedly simulating secondary structure folding with either the Monte Carlo algorithm or the Gillespie algorithm. Here we investigate the relation between the Monte Carlo algorithm and the Gillespie algorithm. We prove that asymptotically, the expected time for a K-step trajectory of the Monte Carlo algorithm is equal to [Formula: see text] times that of the Gillespie algorithm, where [Formula: see text] denotes the Boltzmann expected network degree. If the network is regular (i.e. every node has the same degree), then the mean first passage time (MFPT) computed by the Monte Carlo algorithm is equal to MFPT computed by the Gillespie algorithm multiplied by [Formula: see text]; however, this is not true for non-regular networks. In particular, RNA secondary structure folding kinetics, as computed by the Monte Carlo algorithm, is not equal to the folding kinetics, as computed by the Gillespie algorithm, although the mean first passage times are roughly correlated. Simulation software for RNA secondary structure folding according to the Monte Carlo and Gillespie algorithms is publicly available, as is our software to compute the expected degree of the network of secondary structures of a given RNA sequence-see http://bioinformatics.bc.edu/clote/RNAexpNumNbors .
منابع مشابه
A New Model for Approximating RNA Folding Trajectories and Population Kinetics
RNA participates both in functional aspects of the cell and in gene regulation. The interactions of these molecules are mediated by their secondary structure which can be viewed as a planar circle graph with arcs for all the chemical bonds between pairs of bases in the RNA sequence. The problem of predicting RNA secondary structure, specifically the chemically most probable structure, has many ...
متن کاملTools for Simulating and Analyzing RNA Folding Kinetics
It has recently been found that some RNA functions are determined by the actual folding process itself and not just the RNA’s nucleotide sequence or its native structure. In this paper, we present new computational tools that can be used to study kinetics-based functions for RNA such as population kinetics, folding rates, and the folding of particular subsequences. Previously, these properties ...
متن کاملRoadmap-Based Methods for Studying Protein Folding Kinetics
Protein motions play an essential role in many biochemical processes. Protein folding kinetics has helped define the properties of protein motion. For example, folding rates describe the speed at which a protein folds while population kinetics give insight into the equilibrium folding process. In this paper, we present two new techniques to study kinetics-based functions for proteins such as fo...
متن کاملAn implementation of the Gillespie algorithm for RNA kinetics with logarithmic time update
In this paper I outline a fast method called KFOLD for implementing the Gillepie algorithm to stochastically sample the folding kinetics of an RNA molecule at single base-pair resolution. In the same fashion as the KINFOLD algorithm, which also uses the Gillespie algorithm to predict folding kinetics, KFOLD stochastically chooses a new RNA secondary structure state that is accessible from the c...
متن کاملDiffusive Dynamics of the Reaction Coordinate for Protein Folding Funnels
The quantitative description of model protein folding kinetics using a diffusive collective reaction coordinate is examined. Direct folding kinetics, diffusional coefficients and free energy profiles are determined from Monte Carlo simulations of a 27-mer, 3 letter code lattice model, which corresponds roughly to a small helical protein. Analytic folding calculations, using simple diffusive rat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of mathematical biology
دوره 76 5 شماره
صفحات -
تاریخ انتشار 2018